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Abstract— Human-robot interaction approaches like face
detection, face recognition, pedestrian detection are widely
known in robotics field; however often they lead to perfor-
mance problems. Additionally, false positive and false negative
problems are commonly associated to bad illumination and
strong featured images. Moreover background segmentation
approaches are frequently used to solve this problem on static
camera surveillance. Though all these approaches are unable
to effectively deal with the constant background changes that
certainly happens when the camera sensor is installed on a
mobile robot. Hence, in this work we propose a stereo vision
dynamic background segmentation solution to this problem.

I. INTRODUCTION

The human society is becoming closer to the integration
of robots into our daily environment. While looking to define
the term robot, we found that robot often refers to the
physical manifestation of a system in our physical and social
space, and as such, virtual characters and/or avatar-based
interfaces are not discussed in this work. Likewise while
searching for a definition of social robot, the following has
been proposed: “A physical entity embodied in a complex,
dynamic, and social environment sufficiently empowered to
behave in a manner conducive to its own goals and those of
its community” [3]. Although we like to encourage the use
of our approach to social robots, we prefer to call our robot
an interactive-robot, since social robots might have several
social aspects that our interactive-robot does not have (like
facial expressions, arms and voice).

Several approaches like face detection and face recognition
[11], [15], [16], [12], pedestrian detection [10], [9] often
have to deal with issues associated to bad illumination and
strong featured background. These problems also imply lack
of performance because human detection algorithms will
frequently analyze the whole image searching for features.
Hence we propose a stereo vision dynamic background
segmentation (DBS) to reduce the searching space to an
zone of interaction1. In this work we show in section II-
A the calibration method used for the stereo camera system,
it is explained in section II-B how the horopter calculation
proceeds. Further in section II-D we give an example of
how face and hand recognition frequently used on gesture
recognition algorithms could have better results with our
approach. In section II-E we explain how we did implement
our robotic head tracker in order to have better interaction
with humans. Finally in section III-A, as a study case,
we implemented this technique to improve the results of

1zone of interaction is the region inside the horopter 3D space (see
theoretical horopter definition on section II-B)

Fig. 1: Four degrees of freedom robotic head mounted on
Segway robotic platform body

a gesture recognition algorithm based on Laban movement
analysis proposed in [13].

A. Related Work

By using a reference image, a video coding approach
with Motion JPEG2000 has previously been developed in
the context of road surveillance [17]. Moreover it was shown
how the image reference was built during initialization phase.
The classical background subtraction technique was used
to perform the segmentation of mobile objects. Instead of
updating the remote reference with a specific period, [17]
presented a technique to update the remote background
image by pieces. The updating of the remote reference is
triggered when some specific conditions are met, depending
on the amount of moving areas.

In [8] an integrated system for smart encoding in video
surveillance was presented. Their system aims at defining
an optimized code-stream organization directly based on the
semantic content of the video surveillance analysis module.
The proposed system produces a fully compliant motion
stream that contains regions of interest (typically mobile
objects) data in a separate layer than regions of less interest
(e.g. static background). First the system performs a real-
time unsupervised segmentation of mobiles in each frame of
the video. The smart encoding module uses these regions of
interest maps in order to construct a code-stream that allows
an optimized rendering of the video surveillance stream in
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(a) (b)

Fig. 2: Horopter segmentation schema: a)Noisy scenario,
another subject trying to interfere during the interaction; b)
From the robot point of view, ignoring the interference

low bandwidth wireless applications, allocating more quality
to mobiles than for the background. The integrated system of
[8] improves the coding representation of the video content
without data overhead. It can also be used in applications
requiring selective scrambling of regions of interest as well
as for any other application dealing with regions of interest.

On [14] horopter is calculated and vergence control is
explained on a stereo-vision-system applied to tracking by
using optical flow. The robotic stereo head presented on [14]
is not mounted on a mobile robot. It is also noticeable by the
result images of [14] that the resolution of the disparity map
is 36x36 pixels. Our approach focus on applying the system
to an interactive mobile robot capable of recognize gestures,
in this case, the calculation of disparity need to be very fast
(we have also the gesture to process) otherwise robot body
rotation and translation will easily generate errors into the
disparity map. Additionally computational power now allows
us to use a better resolution for the disparity map, 80x60 in
real time.

B. Motivation

Within the context of human-robot interaction, there is a
pre-requisite, the need for the robot to recognize the person
with whom it will interact. Usually it is done using a video
sensing. Since the system is implemented in a mobile plat-
form, to separate the person from the background demands
more complex processing, due to dynamic characteristics of
the background. This means that an approach based in static
background, as in [17] and [8], is not possible. The challenge
was thus to have a robust real time solution for dynamic
background segmentation on mobile robotics.

Our approach is then based on the Geometric Horopter
as will be shown in section II-B. The robot will consider
visible objects only if they are inside the zone of interaction
region (projected on 2D space of camera image plane). In
figure 2a it is possible to observe the horopter represented
by a semi-circle dashed line at the floor; the subject on the
right of the image is purposely in a pose that would interfere
on the analysis of several algorithms [11], [15], [16], [12],
[10], [9]. Once applying our strategy of DBSH (Dynamic
Background Segmentation based on Horopter) the robot will
only see the person that is inside the horopter, according to
figure 2b.

(a)

(b)

Fig. 3: Stereo camera calibration with Bouguet Matlab tool-
box: a)Images with chessboard target used for calibration;
b)Reconstructed target positions relative to the camera frame
referential

II. OUR APPROACH OF DYNAMIC BACKGROUND
SEGMENTATION

A. Camera Calibration

Camera calibration has been extensively studied, and stan-
dard techniques established. For this work, camera calibra-
tion was performed using the Camera Calibration Toolbox for
Matlab [2]. The C implementation of this toolbox is included
in the Intel Open Source Computer Vision Library [5].

The calibration uses images of a chessboard target in sev-
eral positions and recovers the camera’s intrinsic parameters,
as well as the target positions relative to the camera, as shown
in fig 3b.

The calibration algorithm is based on Zhang’s work in
estimation of planar homographies for camera calibration
[19], but the closed-form estimation of the internal param-
eters from the homographies is slightly different, since the
orthogonality of vanishing points is explicitly used and the
distortion coefficients are not estimated at the initialization
phase. The calibration toolbox will also be used to recover
camera extrinsic parameters and holographic matrix between
the two cameras of the stereo system.

Matlab was used to calibrate the cameras, however, we
implemented in C with QT, a Graphical interface where the
calibration parameters can be manually inserted. So, we can
save the Matlab calibration results in a file and then import
the calibration using our graphical interface.

B. Horopter

Our approach is based on the Geometric Horopter. This
technique used stereo vision to produce a depth map. It
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(a) (b)

Fig. 4: Results of depth-map calculation: a)Depth map (’hot’
colors represent nearest areas, ’cold’ colors represent further
ones; b) Dominant eye raw image

is presented in Fig.4a the depth map resulting from the
application of this algorithm, while the right side shows the
image from one of the stereo cameras.

The application of the horopter will introduce a definition,
the interaction zone. As it will be explained in the next
section, a circle will be defined, and the inside area of that
region is the interaction zone. This means that only objects
inside that area are possible of being detected, and thus to
interact with the robot.

1) Geometrical Horopter :
a) Properties of ViethMuller Circle: The concept of

interaction zone has been defined as dependent of a circle.
That circle is called the Vieth-Muller Circle, the following
properties can be defined (See Fig.4):
• In a pure version eye movement, the fixation point stays

on the same ViethMuller Circle. Fig.4 a) illustrates this
fact showing how P moves to P ′ along the Vieth-Muller
Circle.

• It the fixation point remains static, the disparity for
various points is studied. Disparity is defined as φLC
φR.
b) Theorem 1: If a point Q lies on ViethMuller Circle,

its disparity is zero.
As Q moves outside (e.g. point P moves to position Q in
Fig.4 a)), φL decreases whilst φR will naturally increase.
However ff point Q moves inside the circle, the opposite
relation between φL and φR occurs.

c) Theorem 2: Disparity is nonzero outside the circum-
ference line of the Vieth-Muller Circle (with opposite signals,
depending on whether side of the circle it lies in, outside or
inside).
For human vision system, when the disparity has high enough
values, the object is seen in double (one from left eye and the
other from right eye). This phenomenon is called Diplopia.
The maximum disparity prior to the diplopia even is defined
as Panum’s Fusional Limit.

d) Calculating Disparity: The φL and φR are made
by line of sight with the straight ahead direction. The
GazeAngle γ (see Fig.4 a) and V ergenceAngle µ (see fig.
6) are defined as

γ =
1
2
(φL+ φR)

µ =
1
2
(φL− φR)

CE represents the cyclopean eye and (d + δ) is the
distance from CE to the target object (see fig. 6).

Fig. 5: a) Calculating the Disparity; b) Disparity Properties
on Vieth-Muller Circle

Fig. 6: Simples justification scheme for value γ

The Horizontal Disparity is

h =
I cos γ
d

(
δ

δ + d
+
d tan γ
δ + d

x+ x2)

and Vertical Disparity

v =
I cos γ
d

(
d tan γ
δ + d

y + xy)

where (x, y) are cyclopean image coordinates and I is the
interocular distance.

e) Theorem 3: d = I cos γ/ sin 2µ
A simple justification can be presented for the value of

γ = 0, as it can bee seen in Fig.6.

I/2 = d× sinu× cosu⇒ d = I cos r/ sin 2u

Having disparity calculated, the resulting depth image
(Fig.3 a)) is correlated with the CE image. Pixels that present
negative values for disparity, will be assigned zero value
(black color pixels). The result is a segmented image where
the pixels calculated to be inside the Vieth-Muller circle
define the visible objects within the circle (the interaction
zone). The segmented image (right column of figure 7)
results in a region of interest and this region will define the
true input pixels for the face/hand detector. Consequently
the robot will interact only with subjects inside Vieth-Muller
circle, i.e. inside its current horopter.

f) Noise: at the segmented images, the noisy areas
exists usually due to homogeneous areas in the original
image. Homogeneous areas and also very similar neighbor
features of the image can add noise to our depth map
and consequently to the final horopter segmented image.
Although we have this noise the result is still better for hand
and face detection than if you have no segmentation.
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Fig. 7: a) The toolbox is yet outside the Vieth-Muller Circle;
b) Toolbox starting to enter the horopter zone; c) The object
is fully inside the Vieth-Muller circle, and thus, visible.

C. Hardware Platform

Our robotic head (fig.1) is a common platform consisted
by many sensors. In this work we are using two monocular
cameras (which compose our stereo vision system) and the
four degrees of freedom of our robotic head fig.1 (head pan,
head tilt, vergence in eye left, vergence in eye right). The
cameras are two AVT Guppy Fire-Wire Cameras. Thus, we
calculate stereo imaging for real-time depth-map using the
triangulation principle. Camera images are transferred to a
PC using the IEEE 1394 (Fire-Wire) bus. The PC is a laptop
computer that can be attached in a tray inside the robot
body which is an adapted Segway RMP (Robotic Mobility
Platform). The Segway RMP adaptions made by us consists
basically on four suspended legs to fall avoidance, a strong
box for sensor batteries and a tray for the robotic head
hardware controllers and laptop attachment.

D. Face and Hand Detection

1) Featured base face detection: A multi-stage classifi-
cation procedure has been proposed by [18], that reduces
the processing time substantially while achieving almost the
same accuracy as compared to a much slower and more
complex single stage classifier. Later [6] extends their rapid
object detection framework in two important ways: Firstly,
their basic and over-complete set of haar-like feature is
extended by an efficient set of 45° rotated features, which
adds additional domain-knowledge to the learning framework
and which is otherwise hard to learn. These novel features
can be computed rapidly at all scales in constant time.
Secondly, [6] derive a new post-optimization procedure for
a given boosted classifier that improves its performance
significantly.

More recently Bau-Cheng Shen and Chu-Song Chen pro-
posed a new method to retrieve similar face images from
large face databases. The proposed method extracts a set
of Haar-like features, and integrates these features with su-

pervised manifold learning. Haar-like features are intensity-
based features. The values of various Haar-like features
comprise the rectangle feature vector (RFV) (detailed on
[15]), to describe faces. Compared with several popular
unsupervised dimension reduction methods, RFV is more
effective in retrieving similar faces. To further improve the
performance, [15] combine RFV and a supervised manifold
learning method and obtain satisfactory retrieval results.

2) Skin color hand detection: According to [7], skin color
can provide a useful and robust cue for human-related image
analysis, such as face detection, hand detection and tracking,
people retrieval in databases and Internet, etc. The major
problem of such kinds of skin color detection algorithms is
that it is time consuming and hence cannot be applied to
a real time system. To overcome this problem, Tarek [7]
introduced a fast technique for skin detection which can be
applied in a real time system. In this technique, instead of
testing each image pixel to label it as skin or non-skin (as
in classic techniques), Tarek [7] suggested to skip a set of
pixels to improve performance. The reason of their skipping
process is the high probability that neighbors of the skin
color pixels are also skin pixels.

3) Our solution: In this work we combined face and hand
detection algorithms with the horopter dynamic segmenta-
tion. We firstly do the dynamic background segmentation,
hence it is only necessary to slide on the remaining pixels;
this significantly increases the detection performance. Thus
we have very fast (10 fps) results on the segmentation plus
detection. The gesture recognition algorithm proposed in [13]
assumes always the same default initial position for face
and hands, later on the process it tracks the real position;
this approach implies on performance lost during godfather2

localization. Thus, in order to save start up time, our choice
was to firstly detect the face and the hands position with the
algorithms previously mentioned and give this as input to the
gesture recognition algorithm.

The red oval on fig. 11 c) is an approximation of the
search region. It is observable on the right c) image that
there are areas with skin color on the wall and floor, so if
the full image was passed to the hand algorithm hand false
positives would certainly occurs. Furthermore similar errors
could happen for the face algorithm if the background was
strongly and randomly featured.

E. Tracking

If a subject be inside horopter for some seconds, the robot
will elect this subject to be it’s godfather. Let’s call godfather
the human elected for interaction with the robot. Hence the
robot locate his face and hands as explained in section II-D.
As our robot is an interactive robot, we want it to track the
godfather while he moves also. In order to have an intuitive
interaction it is necessary that the man see the robot looking
to him; or, in other words, the robotic head needs to move
targeting at the center of the subject head.

In homogeneous coordinates consider an image point
P (x, y, z, 1), after normalization P (u, v, 1); knowing focal
length f from camera intrinsic calibration, d from horopter
calculation (see fig. 6) and a empirically found multiplier

2godfather is defined on [13] as the person whom the robot is supposed
to interact
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Fig. 8: αu= pan ,θv = tilt — Tracking angles to the robotic
head

Fig. 9: The five LMA components

λ. We have: φ = d ∗ λ. Due to the fact that u and v are
initially in pixels while d and f are initially in centimeters,
the multiplier λis necessary.

Then, as it is visible on fig. 8, tanθv = v
φf and tanθu =

u
φf .

III. APPLICATIONS OF DYNAMIC BACKGROUND
SEGMENTATION TO INTERACTIVE ROBOTICS

As mentioned on previous sections one of the principles
we are focused in is interaction. The interaction scheme can
be simplified and thus divided in two stages:Whom to interact
with; How to interact. The whom question as been described
throughout sections II-B to II-E. This section will give a
general overview on the how.

A. Laban Movement Analysis

Rett J. in his work [13], investigated the possibility of
using Laban Movement Analysis (LMA) to classify human
movements. Laban Movement Analysis, is a descriptive
language of dancing movements. It was developed by Rudolf
Laban (1879 to 1958), considered by many a pioneer of
European modern dance and theorist of movement education.
There are some studies related to LMA, but this is particu-
larly interesting, because an interactive robot was developed
to serve as a demonstrator of the usability of this technique.

Literature is not in consensus about the number of LMA
components. Most notably, the work of Norman Badler’s
group [21], [1], [20], divides LMA into five components
(Fig. 9) that are: relationship, space, body, shape, effort. Each
of this latter four components deals with a specific aspect
of movements. Non-kinematic components: Body specifies
which body parts are moving, their relation to the body
center; Space deals directly with the trajectory executed
by the body parts while performing a movement. Within
the Kinematic ones there are: Effort which deals with the
dynamic qualities of the movement, and the inner attitude

Fig. 10: LMA Global Model

Movement Interpretation Action
Circle turn 360º Rotation
Pointing Acknowledgment Perform Action
Wave Left Step aside (left) Move Left
Wave Right Step aside (right) Move right
Sagittal Wave Come closer Move Forward
Bye-bye Ignore Gesture, Stop interaction Switch system off

TABLE I: Movement and correspondent robot actions

towards the use of energy; Shape (emerging from Body
and Space) is focused on the body itself. Then we have
Relantionship that appears as the less explored component,
and describes the interaction with oneself, others and the
environment. Some literature only considers the first four
mentioned components [4].

B. Interaction

In [13], a Bayesian framework is used as support to the
implementation of LMA. The Bayes net implementation is
out of the scope of this work, however, Fig. 10 presents
the global model for contextualization purposes. Since LMA
is composed of four main components, Bayesian approach
gives us the flexibility of component integration, i.e. each
component can be modeled separately and integrated in a
final global model. Also probabilistic approaches allow us to
deal with uncertainty and incomplete data, which may also
occur, in case tracking fails at some point. As input to the
Bayesian network, features are provided as evidences. While
movements are being performed, the tracking of body parts
generate 2-D trajectories. The features (e.g. angle displace-
ments, vectorial displacements, acceleration, etc.) emerge
directly from these tracked trajectories.

A set of movements was learned, and a set of actions
was assigned in response, i.e. the robot, through the proba-
bilistic approach, estimated a determined movement through
inference of the features, and consequently would react to
its assumption. Table I shows the movements and the action
responses.

As it can be seen, the actions of the robot are a direct
consequence of the movement identification, and this identi-
fication relies on the robustness of the tracking algorithm.

IV. DYNAMIC RESULTS

As already previously stated, when using color tracking
schemes, the tracker sometimes loses the target by means
of generating false positives for body part identification.
This is due to multi-colored backgrounds, which are very
common within dynamic scenarios. Thus, by applying the
geometric horopter technique to the system used in [13]
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Fig. 11: a) and b) Subject entering in horopter, consequently
entering in the field of view of the robot. c) subject is inside
the horopter and thus have his face and hands localized.

was able to reduce the search area within the image. The
perfect scenario occurs when a perfect bounding box around
the human silhouette is generated, as it was theoretically
represented on Fig. 2b. There is no shadow effect on this
kind of segmentation, since shadows are 2D and will be
considered according to the distance of the plane they are
projected, the errors noticeable on Fig. 11 takes place due to
the small number of correlated points we set up to guaranty
a real time application runnable in a ordinary computer.
Moreover, homogeneous regions like the illuminated white
wall might also generate some erroneous correlated pixels
(II-B.1.f). The algorithm slowed its tracking computational
time, from deploying 15 frames/second to 10 frames/second,
which is not considered critical, as 10 frames is still a
good rate. This happened because the old version used one
camera only, and after the application of this method, most
processing time is dedicated to the computation of the depth
image. However tracking results increased dramatically, by
reducing the tracking false positives in 87%. To strengthen
our tracking rate, geometric constraints were also applied.
The results of movement classification are out of the scope
of this work and hence, will not be discussed.

V. CONCLUSION

Dynamic background segmentation is a good strategy to
reduce the false positives of several algorithms that are based
rather on pixel color or features. By reducing the scope
of the searching image to an zone of interaction area, the
applications of the DBS we proposed here are wide open
on the field of Social Robots. In all the cases (haar like
features face detection, skin color hand detection, gesture
recognition with LMA), our DBS approach shown to improve
the performance and the results.
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